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The influence of quantum effects on the interaction of intense laser fields with plasmas is investigated by
using a hydrodynamic model based on the framework of the relativistic quantum theory. Starting from the
covariant Wigner function and Dirac equation, the hydrodynamic equations for relativistic quantum plasmas
are derived. Based on the relativistic quantum hydrodynamic equations and Poisson equation, the perturbations
of electron number densities and the electric field of the laser wakefield containing quantum effects are
deduced. It is found that the corrections generated by the quantum effects to the perturbations of electron
number densities and the accelerating field of the laser wakefield cannot be neglected. Quantum effects will
suppress laser wakefields, which is a classical manifestation of quantum decoherence effects, however, the
contribution of quantum effects for the laser wakefield correction will been partially counteracted by the
relativistic effects. The analysis also reveals that quantum effects enlarge the effective frequencies of plasmas,
and the quantum behavior appears a screening effect for plasma electrons.
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I. INTRODUCTION

The interaction of intense laser fields with plasmas has
received much theoretical and experimental attention during
the last decades. With the development of ultrashort pulse
laser technology, a large-amplitude relativistic plasma wave
is excited by the ponderomotive force from ultraintense laser
pulses and it can generate such an extremely high accelerat-
ing field of 100 GV/cm, which means that plasma electrons
can be accelerated to 10 GeV over 1 mm distances �1–4�.
The relativistic laser wakefields may become the next gen-
eration of particle accelerators. In 2004, four international
laboratories reported that they obtained monoenergetic elec-
tron beams by laser wakefield acceleration, which have pro-
vided an actual practicable prospect of high-energy electron
beams accelerated by the laser wakefields.

Traditional plasma physics has mainly been limited in the
regimes dominated by classical physics, in which quantum-
mechanical effects are neglected. However, In some plasmas
under extreme physical conditions, such as in ultrasmall
electronic devices �5�, dense astrophysical plasmas �6–9�,
and some laser plasmas �10�, quantum effects have to be
taken into account and there is much attention to practical
applications of quantum mechanics in plasma physics where
the quantum nature of particles plays a critical role.

As a new emerging field in plasma physics, quantum plas-
mas have received extensive attention and interests. The
quantum effects become important in dense plasmas, when
the electron thermal de Broglie wavelength approaches the
electron Fermi wavelength �F and exceeds the electron De-
bye radius �D �viz., �B��F��D� �11,12�. Recent researches
involve quantum ion-acoustic waves �13�, quantum drift

waves �14�, and modifications in Debye screening of quan-
tum plasmas �15�. In addition, Manfredi has reviewed differ-
ent approaches to the modeling of quantum effects in colli-
sionless plasmas �16�. A new dispersion relationship for
electromagnetic drift modes in a nonuniform cold plasma
was obtained by Shukla and Ali �17�. Moreover, relativistic
quantum plasmas have been also investigated in the last de-
cades. Using Wigner function approach, electromagnetic per-
turbations �18�, quantum fluctuations �19�, and relativistic
quantum gas �20� were researched. The dispersion function
of relativistic quantum plasmas was derived by Melrose in
2006 �21�.

In the interaction of intense laser fields with plasmas, es-
pecially in the laser wakefield accelerators, quantum effects
should be taken into account. It is noticed that plasma elec-
trons will become relativistic under the action of intense la-
ser fields, and traditional hydrodynamic models for nonrela-
tivistic plasmas cannot be used to describe the physical
process of laser wakefield acceleration. In this paper, by us-
ing a relativistic quantum hydrodynamic model, we have
studied the relativistic quantum effects in the processes of
the interaction of intense laser fields with plasmas. Based on
the relativistic quantum hydrodynamic equations and the
Poisson equation, the perturbation of electron number den-
sity and the laser wakefields including quantum effects are
derived. By comparing the corrected results with the classi-
cal ones, it is found that quantum effects weaken the laser
wakefields.

This paper is organized as follows. In Sec. II, the hydro-
dynamic equations for relativistic quantum plasmas are de-
rived starting from the covariant Wigner function and Dirac
equation. In Sec. III, the perturbations of electron number
densities and the laser wakefields considering quantum ef-
fects are derived and the contribution of quantum effects to
the laser wakefields is calculated. In Sec. IV, the discussion
and conclusion for quantum effects are presented.*pyji@staff.shu.edu.cn
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II. HYDRODYNAMIC MODEL FOR RELATIVISTIC
QUANTUM PLASMAS

A magnetohydrodynamic model for quantum plasmas was
put forward by Haas in 2005 �22�. Since starting from the
nonrelativistic quantum equations �Wigner function and
Schrödinger equation�, the magnetohydrodynamic model es-
tablished by Haas is nonrelativistic. Under the action of in-
tense laser fields, however, plasma electrons become relativ-
istic and the nonrelativistic hydrodynamic model is no longer
valid, so the relativistic hydrodynamic model for quantum
plasmas should be established to deal with the interaction of
intense laser pulses with plasmas.

It is well known that Wigner function is a kind of quan-
tum mechanical distribution function, and it can be used to
calculate some average values of observable. In the relativ-
istic case, the Wigner distribution is no more unique than it is
in the classical case. In this paper, the covariant one-particle
Wigner distribution under the external electromagnetic fields
is defined as �23,24� by

f��x,p� =
1

�2���4� d4R exp�− i� · R/��

���̄�x +
1

2
R	����x −

1

2
R	
 , �1�

where �	= p	+eA	 /c, � and �̄ are Dirac’s fields obeying

��	�i��	 −
e

c
A		 − mc���x� = 0, �2�

and the bracket  . . . � is a quantum statistical average defined
as

Â� � Tr�
Â� , �3�

where Â is any operator and 
 is the density operator denot-
ing the statistical state of a system. In the above equations,
the metric has the signature +−−−, and e=−�e�.

Taking derivative of Eq. �1� and using the Dirac Eq. �2�, a
kinetic equation satisfied by f��x , p� is obtained as

��f��x,p� +
e

c
F�

	 �

�p	 f��x,p� = 0. �4�

By using the algebra of � matrices ��	 ,���=2�	�, the Dirac
current operator in Eq. �1� can be decomposed into two parts
as

�̄�x +
1

2
R	����x −

1

2
R	 =

i�

2mc
�̄�x +

1

2
R	�I���x −

1

2
R	 −

e

2mc2�A��x +
1

2
R	 + A��x −

1

2
R	��̄�x +

1

2
R	��x −

1

2
R	

−
e

2mc2�A	�x +
1

2
R	 − A	�x −

1

2
R	��̄�x +

1

2
R		���x −

1

2
R	 −

i�

2mc
�	

���̄�x +
1

2
R		���x −

1

2
R	� , �5�

where ��J��=����− ������ and 	�= ��	��−���	� /2, the
first and second terms on the right side of Eq. �5� are the
convective part of the current, and the third and forth terms
are spin contribution to the current. In the weak relativistic
approximation, the spin contribution in Eq. �5� can be ne-
glected and it provides

f��x,p� �
p�

mc
f�x,p� , �6�

and Eq. �4� can be rewritten by

p���f�x,p� +
e

c
F�

	p�
�

�p	 f�x,p� = 0, �7�

where

f�x,p� =
1

�2���4� d4R exp�− i� · R/��

���̄�x +
1

2
R	��x −

1

2
R	
 . �8�

It should be noted that Eq. �7� is still a quantum equation:
f�x , p� is not positive definite. In order to derive a fluid
model, we introduce the definitions of four-current and
momentum-energy tensor

J��x� =
e

m
� d4pp�f�x,p� , �9�

and
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T�� =
1

m
� d4pp�p�f�x,p� . �10�

Taking moments of Eq. �7� and using the definitions �9� and
�10�, the covariant forms of the relativistic quantum hydro-
dynamic equations are obtained as

��J� = 0, �11�

and

��T�� =
1

c
F�

�J�. �12�

By introducing the momentum-energy tensor T�� of the per-
fect fluids

T�� = − P��� + � P

c2 + mn	U�U�, �13�

where P and U�= ��c ,�u� are the pressure and four-
dimensional velocity of the electron fluids, respectively, with
�=1 /�1− �u /c�2 is the relativistic factor. Equations �11� and
�12� can be expressed in three-dimensional vector forms

�t��n� + � · ��nu� = 0, �14�

and

�u

�t
+ u · �u =

enc2

�P + mnc2��
�E +

u

c
� B −

1

c2uu · E	
−

c2

�P + mnc2��2��P +
�

c

�P

�t
	 . �15�

It immediately notices that Eq. �15� do not differ from the
hydrodynamic equations for classical relativistic plasmas.
This may seem surprising, but in the following it will appear
that the quantum nature of this system is in fact hidden in the
pressure term. The pressure term may be decomposed into a
classical and a quantum part, which will be shown as fol-
lows.

Using the previous expressions �9�, �10�, and �13�, one
can compute the pressure. After some algebraic calculations
and under the weak relativistic approximation P�mnc2, one
obtains

P��� =
1

mn
� i�

2
�̄�x��I���x�� −

e

c
A��x��̄�x���x���

�� i�

2
�̄�x��I���x�� −

e

c
A��x��̄�x���x���

−
e2

mc2A��x�A��x��̄�x���x�� +
i�e

2mc
A��x�

��̄�x��I���x�� +
i�e

2mc
A��x��̄�x��I���x��

+
�2

4m
����̄�x�������x�� + ����̄�x�������x��

− ������̄�x����x� − �̄�x�������x�� . �16�

If we introduce the decomposition of spinor as

� = �n exp�iS/��� , �17�

where � is the two-spinor carrying the spin 1
2 properties,

which satisfies �†�=1, we obtain P= PC+ PQ, where the
classical PC and quantum PQ parts of the pressure are

PC =
n

m
���S�2� − ��S��2� , �18�

and

PQ =
�2

2m
����n�2 − �n�2�n� . �19�

Using the approximation relation p��S, where p is the
electron momentum of the plasmas, the classical pressure
can be represented

PC =
n

m
�p2� − p�2� , �20�

which is a standard pressure originated the momentum fluc-
tuations of the particles in plasmas. Under the low tempera-
tures and high-densities plasma conditions, the quantum na-
ture of particles plays a critical role. Inserting the expression
of quantum pressure into Eq. �15� and neglecting the contri-
bution of the classical pressure, the hydrodynamic equation
for relativistic quantum plasmas is obtained as

�u

�t
+ u · �u =

e

m�
�E +

u

c
� B −

1

c2uu · E	
+

�2

2m2�2 � ��2�n
�n

	 −
�2�

2m2�2c
�t����n�2

− �n�2�n� . �21�

The second term on the right side of Eq. �21� is the Bohm
potential with the correction of relativistic factor and the
third term is the coupling correction of relativistic and quan-
tum effects. If one sets � equal to zero, the classical relativ-
istic hydrodynamic equation is recovered.

III. RELATIVISTIC QUANTUM CORRECTION TO LASER
WAKEFIELD ACCELERATION

With the development of ultrashort pulse laser technology,
a large-amplitude relativistic plasma wave is excited by the
ponderomotive force from ultraintense laser pulses and it can
generate an extremely high-accelerating field. The relativistic
laser wakefields may become the next generation of particle
accelerators. When a plasma is characterized under the re-
gimes of low temperatures and high densities, which means
that de Broglie wavelength of electrons is similar to the av-
erage interparticle distances in plasmas, quantum effects will
play a significant role. In this section, we will investigate the
quantum effects in the physical processes of the laser wake-
field acceleration.

A laser field is specified by the vector potential AL along
with the gauge condition � ·AL=0. The ponderomotive
force, exerted by the laser pulse on the plasma, is given by
Fpond= �e���L, where the ponderomotive potential is �L=
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−mc2aL / �2�e��, and aL= �e�AL / �mc2� is the normalized vector
potential of the radiation field.

It is assumed that under the action of the laser fields, the
perturbation of the plasma is only generated from the move-
ment of electrons and the ions remain as a stationary and
homogeneous background. The plasma electrons obey the
following relativistic quantum hydrodynamic equations:

�u

�t
+ u · �u =

e

m�
�E +

u

c
� B −

1

c2uu · E	
+

�2

2m2�2����2�n
�n

	 −
�

c
�t����n�2

− �n�2�n�� , �22�

�

�t
��n� + � · ��nu� = 0, �23�

and

� · E = − 4��e��n − n0� , �24�

where n0 and n are the plasma electron densities before and
after the driving laser beam injecting into the plasmas. Under
the weak relativistic condition �aL�2�1, Eqs. �22�–�24� can
be expanded to one order in aL,

�

�t
u�1� = c

�

�t
aL, �25�

�

�t
n�1� + n0 � · u�1� = 0, �26�

and

�2��1� = 4��e�n�1�, �27�

where � is the scalar potential of the electromagnetic field
and u�1� is just the quiver velocity of the electrons in the laser
field. The solutions of the first-order equations are u�1�=caL,
n�1�=��1�=0. To the second order in aL, Eqs. �22�–�24� give

�u�2�

�t
=

�e�
m

� ���2� + �L� +
�2

2m2����2�n
�n

	
−

�

c
�t����n�2 − �n�2�n�� , �28�

�

�t
n�2� + n0 � · u�2� = 0, �29�

and

�2��2� = 4��e�n�2�. �30�

The first term on the right of Eq. �28� represents the restoring
electrostatic force of the plasma, whereas the second term
represents the outward ponderomotive force of the laser
pulse and the last term represents the quantum correction to
the momentum equation of electrons. Relativistic effects do

not enter the plasma response until the third order, so we
don’t consider the relativistic factor �.

From Eqs. �28�–�30�, the density response and electro-
static potential of the plasma are deduced as

��t
2 + �p0

2 �
n�2�

n0
=

c2

2
�2aL

2 −
�2

4m2n0
��2�2n�2� +

�

c
�t � �2n�2�� ,

�31�

and

��t
2 + �p0

2 ���2� = − �p0
2 �L −

��e��2

m2 ��2n�2� +
�

c
�t � n�2�� .

�32�

Take the approximation of n�2��r , t�=n�2� exp�i�k ·r−�t��
and ��2��r , t�=��2� exp�i�k ·r−�t��, Eqs. �31� and �32� can
be rewritten as

��t
2 + �p0

2 �
n�2�

n0
=

c2

2
�2aL

2 − �1 − ��
k4

4kc
2kp0

2 �p0
2 n�2�

n0
, �33�

and

��t
2 + �p0

2 ���2� = − �p0
2 �L − �1 − ��

k4

4kc
2kp0

2 �p0
2 ��2�, �34�

where kc=mc /� is the Compton wave number of electron,
and kp0=�p0 /c. Introducing the effective plasma frequency
�̃p0

2 = �1+���p0
2 , Eqs. �33� and �34� are transformed to

��t
2 + �̃p0

2 �
n�2�

n0
=

c2

2
�2aL

2 , �35�

and

��t
2 + �̃p0

2 ���2� = − �p0
2 �L, �36�

where �= �1−��k4 /4kc
2kp0

2 is the relativistic quantum cor-
rected term. To solve Eqs. �35� and �36�, it is convenient to
perform a transformation of the speed of light frame �=z
−ct ,�= t. A temporal steady state, � /��=0, in the laser pulse
frame is assumed.

The solutions of Eqs. �35� and �36� read

n�2��r,��
n0

=
1

2k̃p0

�
�0

�

d�� sin k̃p0�� − ����2aL
2 , �37�

and

��2��r,�� = −
kp0

2

k̃p0

�
�0

�

d�� sin k̃p0�� − ����L�r,��� , �38�

where k̃p0= �̃p0 /c. The axial and radial wakefields are then
given by Ez=−�� /�� and Er=−�� /�r, respectively, and it
can further be shown that �Ez /�r=�Er /��. To be specific, we
consider a driving laser pulse in the following profile:

JUN ZHU AND PEIYONG JI PHYSICAL REVIEW E 81, 036406 �2010�

036406-4



aL�r,�� = �aL0 exp�− r2/rL
2�sin���/lL� , for 0 � � � lL;

0, otherwise,
�

�39�

where lL and rL are the pulse length and the spot size, respec-
tively. Inserting Eq. �39� into the solutions Eqs. �37� and
�38�, the density perturbation and the axial wakefield in the
laser pulse location, 0��� lL, are given by

n�2��r,��
n0

=
aL0

2 �2

4�2 − k̃p0
2 lL

2�cos k̃p0�� − lL� − cos�2��

lL
	

+
8

k̃p0
2 rL

2�1 −
2r2

rL
2 	

��cos k̃p0�� − lL� − 1 −
k̃p0

2 lL
2

4�2

��cos�2��

lL
	 − 1���exp�−

2r2

rL
2 	 ,

�40�

and

Ez�r,�� =
mc2

�e�
kp0

2

k̃p0

aL0
2 �2

�4�2 − k̃p0
2 lL

2�
�sin k̃p0�lL − ��

+
k̃p0lL

2�
sin

2��

lL
�exp�− 2r2

rL
2 	 . �41�

The transverse wakefield is easily calculated from Eq. �41�
by the relation �Er /�z=�Ez /�r. When the laser pulse length

is nearly equal to the effective plasma wavelength, lL= �̃p0

=2� / k̃p0, Eq. �40� is reduced to

n�2��r,��
n0

= −
�

4
aL0

2 �1 +
8

kp0
2 rL

2�1 −
2r2

rL
2 	�

�exp�−
2r2

rL
2 	sin�kp0�� +

�n

n0
, �42�

where the corrected term of quantum effects is

�n

n0
= −

�

8
�aL0

2 kp0� exp�−
2r2

rL
2 	cos�kp0�� +

�

4
�aL0

2 8

kp0
2 rL

2

��1 −
2r2

rL
2 	exp�−

2r2

rL
2 	sin�kp0�� . �43�

The first term on the right of Eq. �42� is the classical density
perturbation �25,26�, which is shown in Fig. 1, whereas the
second term is the contribution of quantum effects to the
perturbation of electron number densities, which is repre-

sented in Fig. 2. When taking lL= �̃p0, the axial wakefield in
Eq. �41� is maximum and the wakefield within the laser pulse
is written by

Ez�r,�� = −
mc2�aL0

2

4�e�
kp0 exp�− 2r2

rL
2 	��1 −

�

lL
	cos�kp0��

+ �2��−1sin�kp0��� + �Ez, �44�

where the corrected term of quantum effects is

�Ez =
�

2

mc2�aL0
2

4�e�
kp0 exp�− 2r2

rL
2 	��1 −

�

lL
	cos�kp0��

+ �2��−1sin�kp0��� +
�

2

mc2�aL0
2

4�e�
kp0

2 � exp�− 2r2

rL
2 	

���1 −
�

lL
	sin�kp0�� − �2��−1cos�kp0��� . �45�

The first term on the right of Eq. �44� is the axial wakefield
without considering quantum effects �25,26�, which is shown
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FIG. 1. The density wake for ne=5�1019 cm−3, T=103 K, lL

=�p0=4.72�10−4 cm, aL0
2 =0.1, and rL=8�10−4 cm. The laser

pulse extends over the region 0� �z−ct� / lL�1.
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FIG. 2. The modification of density wake for ne=5

�1019 cm−3, T=103 K, lL= �̃p0=4.68�10−4 cm, aL0
2 =0.1, and

rL=8�10−4 cm. The laser pulse extends over the region 0� �z
−ct� / lL�1.
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in Fig. 3, whereas the second term is the contribution of
quantum effects to the laser wakefield, which is represented
in Fig. 4. Through comparing Figs. 1 and 3 with Figs. 2 and
4, we can see that quantum corrections to the electron num-
ber densities and the electric field of the laser wakefield can-
not be neglected. Compared with the classical density pertur-
bation, the phases of the first term and the second term on the
right of Eq. �43� shift � /2 and �, respectively. It indicates
that quantum effects weaken laser wakefield and the acceler-
ating field of the laser wakefield, which is a classical mani-
festation of quantum decoherence.

IV. DISCUSSION AND CONCLUSION FOR QUANTUM
EFFECTS

In this section, we will examine the correction of the
quantum effects to the plasma frequency. Equations �35� and

�36� show that quantum effects enlarge the frequency of plas-
mas and it can be explained by introducing effective charge
e�ef f�=��1+��e and effective electron number density n�ef f�
= �1+��n0, i.e.,

�̃p0
2 = �1 + ���p0

2 =
4�e�ef f�

2 n0

me
=

4�e2n�ef f�

me
. �46�

Quantum effects induce effective charge or effective number
density of electrons, and the Debye length is found to be
reduced. Thus, quantum effects play a role of screening ef-
fect for plasma electrons here. From the expression of rela-
tivistic quantum corrected term

� =
k4

4kc
2kp0

2 �1 − �� , �47�

we can obviously find that the contribution of quantum ef-
fects is weaken by relativistic effects.

The corrected term is estimated by taking laboratory val-
ues: electron number density n0=5�1019 cm−3, electron
temperature T=103 K. Some characteristic parameters of
plasmas are calculated as follows: �p0=3.99�1014 s−1, kp0
=1.33�104 cm−1, �p0=4.72�10−4 cm, �B=� /mvth=6.65
�10−8 cm, �F=8.77�10−8 cm, and �D=4.36�10−8 cm.
Apparently, the electron thermal de Broglie wavelength ap-
proaches the electron Fermi wavelength �F and exceeds the
electron Debye radius, so the quantum effects cannot be ne-
glected under the above regime of plasmas. It is calculated
that the corrected term of quantum effects is ��10−2 when
the wave number of the electron plasma wave is k=9.09
�106 cm−1 and ��aL�0.3. The contribution of the quan-
tum effects to the effective plasma frequency ��k� is dis-
played in Fig. 5.

To summarize, by using a relativistic quantum hydrody-
namic model, the influence of quantum effects on the inter-
action of intense laser field with plasmas is investigated.
Relativistic hydrodynamic equations are derived by using the
covariant Wigner function and Dirac equation. Based on the
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FIG. 3. The axial wakefield for ne=5�1019 cm−3, T=103 K,
lL=�p0=4.72�10−4 cm, aL0

2 =0.1, and rL=8�10−4 cm. The laser
pulse extends over the region 0� �z−ct� / lL�1.
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FIG. 5. The corrected term of quantum effects ��k� for different
values of the wave number k. The electric equilibrium number den-
sity n0=5�1019 cm−3, temperature T=103 K.
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relativistic quantum hydrodynamic equations and Poisson
equation, the perturbation of the electron number densities
and the electric field of the laser wakefields containing quan-
tum effects are deduced. The quantum corrections to the
plasma frequency are examined and estimated by taking the
parameters of laboratory plasmas. Results show that quan-
tum effects suppress the perturbation of the electron number
densities and the electric field of the laser wakefields. In
other words, quantum effects weaken the laser wakefields
and the accelerating field of laser wakefields, which is a clas-
sical manifestation of quantum decoherence. The derived
correction can be explained by an additional effective pres-
sure created in plasmas by quantum fluctuations. The addi-
tional pressure leads to more dispersive plasma wave, which

weakens the laser wakefields. Our analysis reveals that quan-
tum effects enlarge the frequency of plasma via a screening
process and it is equivalent to increase the effective charge of
plasma electrons. The contribution of quantum effects is
weaken by relativistic effects.
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